Dušan Medveď, Michal Kolcun, Jaroslav Petráš, Rastislav Stolárik, Štefan Vaško

Automatizované meranie charakteristických veličín fotovoltických panelov

Tento príspevok sa zaoberá popisom merania, resp. postupu snímania relevantných veličín fotovoltických článkov použitých v rámci projektu s ITMS kódom 26220220080. Jednotlivé merania boli prispôsobené požiadavke autonómnej prevádzky výroby a spotreby elektrickej energie.

Kľúčové slová: fotovoltický článok, voltampérová charakteristika

This paper deals with the description of used measurement, respectively procedure of measuring of relevant parameters of photovoltaic panels used within the project with ITMS code 26220220080. The measurements were adapted to the requirement of autonomous operation of generation and consumption of electricity.

Keywords: photovoltaic cell, volt-current characteristics

I. ÚVOD

Účinnosť premeny dopadajúceho slnečného žiarenia (elektromagnetického žiarenia o určitej vlnovej dĺžke) na fotovoltický článok (FV) na elektrickú energiu je jedným z najdôležitejších parametrov FV článku. Na celkovú účinnosť má vplyv niekoľko parametrov:

- čistota na povrchu,
- odrazy na povrchu,
- uhol dopadu (použitím trackerov je možné ovplyvniť uhol dopadu).
- reflexivita povrchu kvôli veľkému rozdielu indexov lomu na rozhraní vzduch/polovodič je potrebné použiť prispôsobovaciu (antireflexnú) vrstvu (resp. sústavu vrstiev),
- úzka oblasť absorpcie nosiče nábojov generované mimo oblasť priestorového náboja PN-prechodu nie sú separované, rekombinujú, a neprispievajú k výslednému prúdu. Preto je dôležité, aby PN-prechod bol umiestnený čo najbližšie k povrchu a aby bol čo najširší,
- absorpčné spektrum pri polovodičoch je pomerne úzke, t.j. časť dopadajúcich fotónov prejde polovodičom a časť je absorbovaná, avšak na tvorbu elektrón-dierového páru sa využije len časť ich energie, zvyšok sa mení na teplo, ďalšia časť sa mení len na teplo. Pre zvýšenie účinnosti sa používa sústava vrstiev rôznych kompozitných polovodičov (s rôznou šírkou zakázaného pásma a teda) s viacerými PNprechodmi nad sebou,
- rekombinácia fotogenerovaných nosičov pre zníženie rekombinácie je potrebné použiť napr. čisté monokryštalické polovodiče,
- sériový odpor (polovodiča a kontaktov) spôsobuje ohmické straty.

Z uvedených parametrov je zrejmé, že zabezpečiť čo najvyššiu účinnosť premeny slnečného žiarenia na elektrickú energiu si vyžaduje správny návrh samotného FV panelu a meranie účinnosti tejto premeny priamym alebo nepriamym spôsobom.

II. POPIS POUŽITÝCH FOTOVOLTICKÝCH PANELOV

Pre experimentálne účely boli do laboratória vybrané fotovoltické komponenty a panely (Obr. 1 a 2) od výrobcov Nova, Sanyo, Solarsys a Trina. Od uvedených výrobcov fotovoltických panelov sú použité nasledovné modely fotovoltických komponentov:

- panel PV *Solarsys* PM245-BB s monokryštalickou technológiou výroby a počtom buniek 60, výkonom 245 W, inštalovaných je 10 kusov panelov,
- amorfná technológia Thinfilm Nova T-series 80 W, s technológiou výroby fotovoltických buniek thinfilm, výkon jednotlivých panelov je 80 W, počet kusov inštalovaných panelov je 5,
- Sanyo HIT214, s hybridnou technológiou výroby panelov, výkonom 214 W, 5 kusov inštalovaných panelov,
- Trina TSM-PC05 235 W, s výkonom 235 W, bolo osadených 10 kusov panelov, polykryštalická technológia výroby panelov.

Obr. 1. Pohľad na fotovoltické panely v externej časti laboratória

Obr. 2. Fotovoltické panely v externej časti laboratória

Obr. 3. Pohľad na monokryštalický FV panel osadený v externej časti laboratória

III. RADENIE FOTOVOLTICKÝCH PANELOV

Radenie fotovoltických panelov bolo na streche budovy zvolené podľa nasledujúcej tabuľky (umiestnením na 2-osí pohyblivý tracker, stabilne vodorovne, na východ, na západ a na juh).

TABUĽKA I Usporiadanie fotovoltických panelov na streche

	o a postantiament action contacting the particle of the contaction								
Tracker	ker Vodorovne Východ		Západ	Juh	Tracker	Vodorovne	Východ	Západ	Juh
Nova	Nova	Nova	Nova	Nova	Trina	Trina	Trina	Trina	Trina
Sanyo	Sanyo	Sanyo	Sanyo	Sanyo	Trina	Trina	Trina	Trina	Trina
Solarsys	Solarsys	Solarsys	Solarsys	Solarsys	Solarsys	Solarsys	Solarsys	Solarsys	Solarsys

TABUĽKA II Kódové značenie fotovoltických panelov (uvedené v tabuľke I)

d	, , , , , , , , , , , , , , , , , , ,									
	Tracker	Vodorovne	Východ	Západ	Juh	Tracker	Vodorovne	Východ	Západ	Juh
	00	10	20	30	40	50	60	70	80	90
	01	11	21	31	41	51	61	71	81	91
	02	12	22	32	42	52	62	72	82	92

Obr. 4. Fotovoltické panely v externej časti laboratória (pohľad na FV panely umiestnené na trackeroch; popis je uvedený v prvom stĺpci tabuľky I.)

Uvedené fotovoltické panely sú umiestnené na streche budovy, ktorá usporiadaním okolitých budov vytvára vhodné podmienky pre meranie (FV panely nie sú ovplyvnené zatienením od okolitých budov a je možné realizovať celodenné, resp. nepretržité merania počas celého roka).

IV. AUTOMATIZOVANÉ MERANIE VELIČÍN FOTOVOLTICKÝCH PANELOV

Ako už bolo spomenuté vyššie, dané FV panely sú umiestnené na streche budovy v Prešove (Plzenská 2). Zber a vyhodnotenie nameraných údajov sa realizovalo v priestoroch Technickej univerzity v Košiciach. Prenos nameraných údajov bol realizovaný internetovým spojením. Dáta boli odosielané raz za hodinu, pričom sa zaznamenávali údaje merané každú minútu. Z jednotlivých panelov sa automaticky (aktivizovaním zberného datakoncentrátora) odčítavali a zaznamenávali snímané veličiny, uložili na vnútorné pamäťové médium a ftp protokolom sa zasielali namerané dáta do servera, kde sa ďalej vyhodnocovali.

Syntax zasielaných dát v textovom poli je uvedený na nasledujúcom obrázku.

```
data collection: Thu Jan 10 12:00:28 2013
dev:01 +00.658
                     +0.0233+0.0583+0.0228+0001.7+0002.3+0000.6
dev:0B +00.633
                     +0.0061+0.0177+0.0165+0002.5+0002.4+0002.7
dev:15 +00.466
                     +0.0449+0.0425+0.0276+0005.7+0006.6+0006.2
dev:1F +00.525
dev:29 +00.489
                     \substack{+0.0360+0.0444+0.0340+0002.4+0002.7+0003.3\\+0.0540+0.0463+0.0318+0001.5+0002.3+0002.4}
dev:33 +00.626
                      +0.0177+0.0149+0.0494+0002.7+0002.5+0002.4
                 +0.0141+0.0337+0.0268+0002.4+0002.4+0002.5
dev:3D
dev:47
                 +0.0570+0.1128+0.0454+0003.1+0002.7+0002.3
dev:51
                 +0.0654+0.0605+0.0105+0004.7+0004.7+0004.6
dev:5B
                 +0.0590+0.0551+0.0449+0006.3+0006.0+0006.3
data collection: Thu Jan 10 12:01:28 2013
dev:01 +00.693
dev:0B +00.659
                     +0.0159+0.0611+0.0241+0001.8+0002.3+0000.4
                     +0.0183+0.0189-0.0012+0002.3+0002.4+0002.5
dev:15 +00.503
dev:1F +00.560
                     +0.0471+0.0440+0.0282+0005.7+0006.6+0006.1
                     \substack{+0.0377+0.0465+0.0355+0002.5+0002.9+0003.3\\+0.0579+0.0497+0.0338+0001.7+0002.3+0002.8}
dev:29 +00.525
dev:33 +00.651
                 +0.0190+0.0158+0.0529+0002.8+0002.5+0002.0
+0.0150+0.0357+0.0282+0002.7+0002.4+0002.7
dev:3D
                 +0.0592+0.1161+0.0464+0002.9+0002.6+0002.3
dev:47
dev:51
                 +0.0683+0.0633-0.0100+0004.8+0005.1+0004.7
dev:5B
                 +0.0632+0.0591+0.0480+0006.2+0006.2+0006.4
```

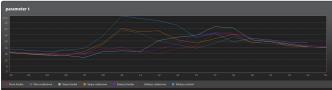
Obr. 5. Formát dát v súbore na koncentrátore dát a serveri

Na každom fotovoltickom paneli sa snímala teplota (termočlánkom typu K) a napätie, pričom pri niektorých paneloch boli osadené aj solarimetre CR100 na snímanie slnečnej radiácie.

Rozsahy napäťových (prevodníkových) výstupov sú uvedené v nasledujúcej tabuľke.

TABUĽKA III Rozsahy napäťových výstupov zo snímačov

, ,	Typ vstupu
Teplotné vstupy txx	termočlánok typu K
Napäťové vstupy Uxx	0 ÷ 1 V
Pyranometer Wxx	0 ÷ 10 V


Význam jednotlivých číselných údajov uvedených na obr. 5 je daný nasledujúcou tabuľkovou schémou.

TABUĽKA IV Rozsahy napäťových výstupov snímačov z FV panelov (uvedené v tabuľke I a II)

pozícia	0	1	2	3	4	5	6	7
adresa								
"01"	Wm01	nepouž.	U02	U01	U00	t00	t01	t02
"11"	Wm11	nepouž.	U12	U11	U10	t10	t11	t12
"21"	Wm21	nepouž.	U22	U21	U20	t20	t21	t22
"31"	Wm31	nepouž.	U32	U31	U30	t30	t31	t32
"41"	Wm41	nepouž.	U42	U41	U40	t40	t41	t42
"51"	Wm51	nepouž.	U52	U51	U50	t50	t51	t52
"61"	nepouž.	nepouž.	U62	U61	U60	t60	t61	t62
"71"	nepouž.	nepouž.	U72	U71	U70	t70	t71	t72
"81"	nepouž.	nepouž.	U82	U81	U80	t80	t81	t82
"91"	nepouž.	nepouž.	U92	U91	U90	t90	t91	t92

Údaje z napäťových výstupov snímačov sa ukladajú do zberného počítača (servera), kde sa ďalej vyhodnocujú a je ich možné zobraziť v on-line forme. Príkladné zobrazenie daných grafických a číselných výstupov je uvedené na nasledujúcom obrázku.

Obr. 6. Grafické rozhranie systému pre zobrazenie časových priebehov parametrov

V. ZÁVER

Tento príspevok prezentoval časť výsledkov merania realizovaných v rámci projektu s ITMS kódom 26220220080. Ako je vidieť z prezentovaných výsledkov, tieto merania majú stanoviť vhodnosť, resp. využiteľnosť toho-ktorého panelu a jeho ďalšie nasadenie v danej lokalite.

POĎAKOVANIE

Tento príspevok vznikol vďaka podpore v rámci operačného programu Výskum a vývoj pre projekt: Výskum charakteristík fotovoltaických komponentov pre efektívne projektovanie solárnych systémov, s ITMS kódom: 26220220080, spolufinancovaný zo zdrojov Európskeho fondu regionálneho rozvoja.

Podporujeme výskumné aktivity na Slovensku/Projekt je spolufinancovaný zo zdrojov EÚ

LITERATÚRA

- [1] Datasheet PV Solarsys panel PM 2XX-3BB. [online] [cit. 2.9.2014]
 Dostupné na internete: < http://www.pvsolarsys.sk/data/PV-Solarsys-panel-PM-2XX-3BB.pdf>
- [2] Photovoltaic modules ersol Nova®-T series IRES Solar. [online]. [cit. 2.9.2014]. Dostupné na internete: < http://www.ires-solar.com/uploads/pdf/thin-film-solar-panels-flyer.pdf>
- [3] Sanyo HIT-214 NKHE5. [online]. [cit. 2.9.2014]. Dostupný na internete: http://shop.nwcomp-solar.de/media/docs/sanyo-hip-214-nkhe5.pdf
- [4] TSM-PC05 TSM-PA05 Trina Solar. [online]. [cit. 2.9.2014]. Dostupný na internete: http://www.trinasolar.com/HtmlData/downloads/us/products/mono/PC05 Datasheet Dec12 EN.pdf
- [5] Temperature Sensors for Surface Measurement PTR-24, PTR-25. [online]. [cit. 2.9.2014]. Dostupný na internete: http://www.meratex.sk/public/media/0528/ptr-24-pdf-en.pdf

ADRESY AUTOROV

Ing. Dušan Medved', PhD., Dr.h.c. prof. Ing. Michal Kolcun, PhD., Ing. Jaroslav Petráš, PhD., Technická Univerzita Košice, Katedra elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, Dusan.Medved@tuke.sk, Michal.Kolcun@tuke.sk, Jaroslav.Petras@tuke.sk

Ing. Rastislav Stolárik, Ing. Štefan Vaško, VÁDIUM s.r.o., Plzenská 2, Prešov, Slovenská Republika, stolarik@vadium.sk, vasko@vadium.sk