Jaroslav Petráš, Michal Kolcun, Dušan Medveď, Rastislav Stolárik, Štefan Vaško

Automatizovaný systém zberu dát z fotovoltických panelov

Tento príspevok sa venuje automatizovanému systému určenému na zber dát z fotovoltických panelov a ich zobrazeniu v grafickej forme.

Kľúčové slová: zber dát; fotovoltický panel

This paper deals with automatized system for data collection of the measured data from photovoltaic panels. (Automatized data collection system for photovoltaic panels)

Keywords: data collection; photovoltaic panel

I. ÚVOD

V rámci meraní projektu "Výskum charakteristík fotovoltaických komponentov pre efektívne projektovanie solárnych systémov" bolo vybudované spoločné laboratórium fotovoltiky s rôznymi typmi fotovoltických panelov. Vo vybavení laboratória sú k dispozícii vzorky fotovoltických panelov od rôznych výrobcov, ktoré sú umiestnené a orientované v rôznych smeroch.

Skupina 6 panelov je konštrukčne umiestnených na polohovacích hlaviciach, ďalšie skupiny po 6 panelov sú orientované napevno v smeroch vodorovne, na juh, západ a východ.

Článok sa zaoberá systémom na zber dát z týchto fotovoltických panelov, ktorý bol realizovaný v rámci projektu.

II. FOTOVOLTICKÉ PANELY POUŽITÉ V RÁMCI MERANÍ

Časť spoločného laboratória je lokalizovaná v Prešove a obsahuje 30 fotovoltických panelov od rôznych výrobcov, rôzne konštrukčne vyhotovených a orientovaných rôznym smerom. Pre jednotlivé panely sa vykonávajú kontinuálne merania teploty, napätie a výkonu. Dané parametre sú koncentrátorom sústreďované do jedného súboru uloženého na serveri umiestnenom v tejto časti laboratória.

V druhej časti laboratória lokalizovanej v Košiciach na Katedre elektroenergetiky je umiestnený databázový a web server, ktorý v pravidelných intervaloch 60 minút pristupuje cez FTP protokol na server umiestnený pri fotovoltických paneloch, sťahuje súbor s dátami nameranými za poslednú hodinu zo všetkých snímačov na jednotlivých fotovoltických paneloch.

III. FORMÁT SÚBORU S DÁTAMI FOTOVOLTICKÝCH PANELOV

Na obr. 1 je zobrazená časť súboru, v ktorej sú uložené dáta namerané na jednotlivých fotovoltických paneloch. Dáta sú zaznamenávané každú minútu, pričom pre každú minútu je k dispozícii súbor dát.

Tento súbor začína hlavičkou, kde je zaznamenaný dátum a čas kedy boli parametre nasnímané a uložené. Nasleduje 10 riadkov so samotnými dátami, ktoré sú uložené a matici. Každú riadok predstavuje zariadenie, na vstupe ktorého sú pripojené snímače jednotlivých parametrov snímaných na fotovoltických paneloch.

Každú z týchto zariadení má viac vstupov a je identifikované na začiatku riadku znakmi "dev: XX", kde XX je identifikátor zariadenia v hexadecimálnej forme.

```
data collection: Thu Jan 10 12:00:28 2013
dev:01 +00.658
dev:0B +00.633
dev:15 +00.466
dev:1F +00.525
dev:29 +00.489
                           +0.0233+0.0583+0.0228+0001.7+0002.3+0000.6
+0.0061+0.0177+0.0165+0002.5+0002.4+0002.7
+0.0449+0.0425+0.0276+0005.7+0006.6+0006.2
                            +0.0360+0.0444+0.0340+0002.4+0002.7+0003.3
                            +0.0540+0.0463+0.0318+0001.5+0002.3+0002.4
dev:33 +00.626
                            +0.0177+0.0149+0.0494+0002.7+0002.5+0002.4
dev:3D
dev:47
                      +0.0141+0.0337+0.0268+0002.4+0002.4+0002.5
+0.0570+0.1128+0.0454+0003.1+0002.7+0002.3
dev:51
                      +0.0654+0.0605+0.0105+0004.7+0004.7+0004.6
dev:5B
                      +0.0590+0.0551+0.0449+0006.3+0006.0+0006.3
data collection: Thu Jan 10 12:01:28 2013
dev:01 +00.693 +0.0159+0.0611+0.0
dev:0B +00.659 +0.0183+0.0189-0.0
                            +0.0159+0.0611+0.0241+0001.8+0002.3+0000.4
                            +0.0183 + 0.0189 - 0.0012 + 0002.3 + 0002.4 + 0002.5 \\ +0.0471 + 0.0440 + 0.0282 + 0005.7 + 0006.6 + 0006.1
dev:15 +00.503
dev:1F +00.560
                            +0.0377+0.0465+0.0355+0002.5+0002.9+0003.3
dev:29 +00.525
dev:33 +00.651
                            +0.0579+0.0497+0.0338+0001.7+0002.3+0002.8\\+0.0190+0.0158+0.0529+0002.8+0002.5+0002.0
                      +0.0150+0.0357+0.0282+0002.7+0002.4+0002.7
dev:3D
                      +0.0592+0.1161+0.0464+0002.9+0002.6+0002.3
+0.0683+0.0633-0.0100+0004.8+0005.1+0004.7
dev:51
dev:5B
                      +0.0632+0.0591+0.0480+0006.2+0006.2+0006.4
```

Obr. 1. Formát dát v súbore na koncentrátore dát a serveri

Ďalšia časť riadku obsahuje samotné dáta. Sú k dispozícii dáta zo snímačov teploty a napätia pre každý z fotovoltických panelov a výkonu pre vybrané panely.

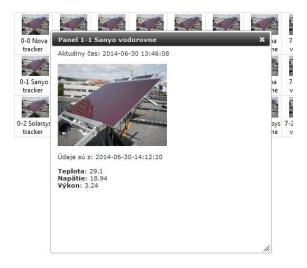
IV. SYSTÉM PRE ZBER DÁT A ICH ZOBRAZENIE

V časti laboratória fotovoltiky lokalizovanej v Košiciach na Katedre elektroenergetiky je umiestnený databázový a web server, ktorý v pravidelných intervaloch 60 minút pristupuje cez FTP protokol na server kde je umiestnený súbor s dátami z fotovoltických panelov, sťahuje súbor s dátami nameranými za poslednú hodinu zo všetkých snímačov na jednotlivých fotovoltických paneloch a ukladá na záznamové zariadenie.

Súbory s dátami sú triedené podľa rokov a mesiacov. Na tomto web serveri ej umiestnená web aplikácia, ktorá uložené dáta spracúva a zobrazuje v požadovanej forme a s požadovanou presnosťou.

Na obr. 2 je zobrazená titulná časť tejto web aplikácie s prehľadom použitých fotovoltických panelov, ich vyobrazením a názvom. Po kliknutí na jednotlivé vyobrazenia fotovoltických panelov sa zobrazia aktuálne hodnoty parametrov (obr. 3.).

Pre ďalšie spracovanie sú údaje spriemerované a to podľa požiadavky na zobrazenie časového priebehu jednotlivých parametrov. Používa sa metóda podvzorkovania, kde sa pre graf časového priebehu používa len každá n-tá vzorka údajov, kde n=1 až n=15. Druhá metóda používa aritmetický priemer hodnôt parametrov danej veličiny.


Prehľad panelov

0-0 Nova	1-0 Nova	2-0 Nova	3-0 Nova	4-0 Nova	5-0 Trina	6-0 Trina	7-0 Trina	8-0 Trina	9-0 Trina
tracker	vodorovne	východ	západ	juh	tracker	vodorovne	východ	západ	juh
0-1 Sanyo	1-1 Sanyo	2-1 Sanyo	3-1 Sanyo	4-1 Sanyo	5-1 Trina	6-1 Trina	7-1 Trina	8-1 Trina	9-1 Trina
tracker	vodorovne	východ	západ	juh	tracker	vodorovne	východ	západ	juh
0-2 Solarsys	1-2 Solarsys	2-2 Solarsys	3-2 Solarsys	4-2 Solarsys	5-2 Solarsys	6-2 Solarsys	7-2 Solarsys	8-2 Solarsys	9-2 Solarsys
tracker	vodorovne	východ	západ	juh	tracker	vodorovne	východ	západ	juh

Obr. 2. Titulná časť web aplikácie s prehľadom použitých fotovoltických panelov


V. ZOBRAZOVACIE ROZHRANIE SYSTÉMU

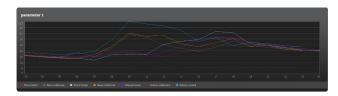
Obr. 4. zobrazuje grafické rozhranie systému, v ktorom sa nachádzajú voľby pre zobrazenie (obr. 5.), vybrané údaje fotovoltických parametrov v tabuľkovej forme (obr. 6.) a graf časového priebehu vybraných parametrov (obr. 7.).

Obr. 3. Detail fotovoltického panelu s jeho nameranými parametrami

Obr. 4. Grafické rozhranie systému pre zobrazenie časových priebehov parametrov

Deň:	Parameter			0-0 Nova tracker	1-0 Nova vodorovne		
2014-06-05	o t	Podvzorkovanie 15 ▼	priemer	0-1 Sanyo tracker	1-1 Sanyo vodorovne		
	0		o presne	0-2 Solarsys tracker	1-2 Solarsys vodorovn		

Obr. 5. Grafické rozhranie systému pre zobrazenie časových priebehov parametrov – panel filtrov


Je možné zvoliť deň, pre ktorý sa majú vybrané údaje zobraziť, parameter, ktorý sa má zobraziť (teplota t, napätie u alebo výkon w), spôsob zobrazenia grafu časového priebehu – priemerné hodnoty alebo hodnoty získané metódou podvzorkovania (voľba presne). V prípade podvzorkovania je možné zvoliť rád podvzorkovania od 1 (presné zobrazenie každej hodnoty) až 15 (zobrazenie každej 15-stej hodnoty).

Rovnako systém poskytuje možnosť voľby konkrétneho panelu, ktorého údaje sa majú zobraziť.

parameter t

	02	03	04	06	07	08	10	11	12	14	15	17	18	19	21	22	23	01
Nova tracker	19.1	18.1	17.2	16.6	17.5	21.8	21.2	19.7	17.3	21.7	24.2	36.6	35.4	31.6	29.2	26.3	24.6	24.1
Nova vodorovne	18	16.9	16	21.8	16.9	25.6	39.6	36.3	28.8	25.7	22.2	26.6	32.9	27.7	26.6	24.7	23.8	
Sanyo tracker	18.2	17	16	15.5	13.6	18.9	19.8	19.2	29.5	32.6	34.2	42.5	41.2	30.1	28.4	26	23.7	22.8
Sanyo vodorovne	18.3	16.8	15.7	15.4	19.3	27.2	40.8	37.6	38.6	30.2	27.1	31.1	35.3	27.6	28.5	24.5	23.4	
Solarsys tracker	19	17.7	16.9	16	16.5	20	23.3	18.4	21.4	26.2	34.5	36.8	36.5	31.8	29.1	26.7	25.2	23.2
Solarsys vodorovne	18.5	17.7	16.2	15.6	19.1	26.5	37.9	38.6	38.2	28,6	23.6	28.3	28.1	27	28.9	24.8	23.6	23.2
Solarsys východ	21.5	20.3	19.3	20	22.2	33.8	52.5	50.1	48.1	43.8	32.3	36.3	28.2	31.5	30.1	27.9	27.4	

Obr. 6. Vybrané údaje fotovoltických parametrov v tabuľkovej forme

Obr. 7. Vybrané údaje fotovoltických parametrov v tabuľkovej forme

VI. ZÁVER

V spoločnom laboratóriu fotovoltiky bol v rámci projektu "Výskum charakteristík fotovoltaických komponentov pre efektívne projektovanie solárnych systémov" vyvinutý automatizovaný systém pre zber a zobrazenie údajov nameraných na fotovoltických paneloch v danom laboratóriu.

Systém automaticky zbiera a archivuje dáta o teplote, napätí a výkone. Následne ich umožňuje zobrazovať pre vybrané panely, dátum a parameter vo vybranej forme v tabuľkovej a grafickej forme.

Popísaný systém prispieva k metódam vyhodnotení daných údajov a slúži ako archivačný nástroj a zobrazovacie rozhranie.

POĎAKOVANIE

Tento príspevok vznikol vďaka podpore v rámci operačného programu Výskum a vývoj pre projekt: Výskum charakteristík fotovoltaických komponentov pre efektívne projektovanie solárnych systémov, s ITMS kódom: 26220220080, spolufinancovaný zo zdrojov Európskeho fondu regionálneho rozvoja.

Podporujeme výskumné aktivity na Slovensku/Projekt je spolufinancovaný zo zdrojov EÚ.

LITERATÚRA

[1] Dušan Medved': Možnosti zvýšenia účinnosti fotovoltaických panelov. In: Elektroenergetika. Roč. 4, č. 1 (2011), - ISSN 1337-6756.J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

- [2] Katalóg PV Solarsys: PV Solarsys panel PM 2XX-3BB
- [3] Katalógový list Trina: TSM-PC05
- [4] Installation manual TrinaSolar, IEC Version
- [5] Katalógový list Sanyo: HIP-215NKE5, HIP-214NKE5
- [6] Katalógový list Solar module Nova T series

ADRESY AUTOROV

Jaroslav Petráš, Technická Univerzita Košice, Katedra elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, <u>Jaroslav.Petras@tuke.sk</u>

Michal Kolcun, Technická Univerzita Košice, elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, Michal.Kolcun@tuke.sk

Dušan Medveď, Technická Univerzita Košice, elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, <u>Dusan.Medved@tuke.sk</u>

Rastislav Stolárik, VÁDIUM s.r.o., Plzenská 2, 080 01 Prešov, Slovenská republika, stolarik@vadium.sk

Štefan Vaško, VADIUM s.r.o., Plzenská 2, 080 01 Prešov, Slovenská republika, vasko@vadium.sk