Roman Jakubčák, Ľubomír Beňa, Miroslav Kmec

Možnosti využitia FACTS zariadení v elektrizačných sústavách

Článok sa venuje problematike zvyšovania zaťažiteľnosti elektrizačných sústav (ES) pomocou FACTS (Flexible Alternating Current Transmission System) zariadení, pri súčasnom znižovaní činných strát, ku ktorým dochádza pri prenose výkonu v sieti. Za týmto účelom sa využili dva druhy FATCS zariadení TCSC (Thyristor Controlled Series Capacitor) a SVC (Static Var Compensator). Všetky simulácie boli vykonané v programe MATLAB.

Kľúčové slová: FACTS, TCSC, SVC,

I. ÚVOD

V súčasnosti sme svedkami neustáleho zvyšovania dopytu po elektrickej energii. To spolu s liberalizáciou trhu spôsobuje vznik problémov v riadení ES a taktiež vznik problémov spojených so spoľahlivosťou dodávok elektrickej energie [6, 7].

V dôsledku toho sú prevádzkovatelia ES čoraz viac nútení využívať nové možnosti riadenia ES. Jednou z týchto možností je nasadenie FACTS zariadení. Ich využívaním je možné docieliť riadenie tokov výkonov, zvýšenie napäťovej stability, tlmenie oscilácií výkonov v sieti, zvýšenie prenosovej schopnosti už existujúcich vedení, zníženie činných strát v sieti. Práve posledným dvoch cieľom sa venuje tento článok, pričom sa sleduje vplyv FACTS zariadení na zvýšenie prenosovej schopnosti sieti, v porovnaní so stavom bez využitia FACTS zariadení.

II. TCSC, SVC

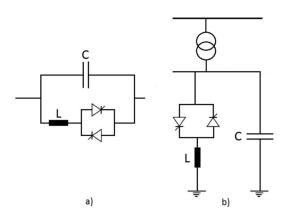
TCSC – Tyristorovo riadený sériový kondenzátor patrí do skupiny sériových regulátorov. Predovšetkým sa využíva za účelom riadenia tokov výkonov v sieti. Pozostáva z kondenzátora, ku ktorému je paralelne pripojená tyristorovo riadené tlmivka. Typická konfigurácia pozostáva z viacerých takýchto modulov zapojených do série.

Hlavnou úlohou TCSC je poskytnúť [1, 8]:

- rýchlu a spojitú zmenu impedancie vedenia,
- dynamické riadenie toku výkonu vo vybranom vedení,
- obmedziť vznik kruhových tokov výkonov,
- tlmenie kývania výkonu v sieti.

Pri simuláciách je model TCSC reprezentovaný premenlivou impedanciou, ktorá je pripojená sériovo k vedeniu, ku ktorému je pripojené TCSC. V dôsledku toho dochádza k zmene celkovej reaktancie vedenia:

$$X_{\rm C} = X_{\rm V} + X_{\rm TCSC} \tag{1}$$


Kde $X_{\rm C}$ je celková reaktancia vedenia s TCSC, $X_{\rm V}$ reaktancia samotného vedenia bez TCSC a $X_{\rm TCSC}$ je pridaná reaktancia vedenia samotným TCSC. Pri výpočtoch sa uvažuje možnosť kompenzácie vedenia v dôsledku použitia TCSC od 0,4 do 1,6 násobku pôvodnej hodnoty reaktancie vedenia bez TCSC.

SVC- Statický kompenzátor jalového výkonu patrí do skupiny paralelných regulátorov. Ide o paralelne zapojený zdroj, alebo spotrebič jalového výkonu, ktorého úlohou je najčastejšie regulovať

napätie v uzle, do ktorého je zapojený. Pozostáva z tyristorovo riadenej alebo spínanej tlmivky, kondenzátora alebo ich kombinácie. Používaním SVC v ES je možné dosiahnuť [2]:

- stabilizáciu a lepšiu regulovateľnosť napätia,
- zníženie strát spôsobených prenosom,
- tlmenie oscilácií a zvýšenie tlmenia menších porúch,
- zvýšiť prenosovú schopnosť existujúcich vedení,
- zvýšiť limity prenosovej stability.

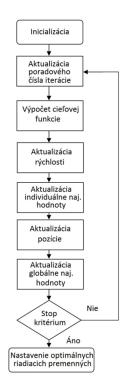
Model SVC je reprezentovaný premenlivým zdrojom/spotrebičom jalového výkonu, ktorý je schopný odoberať (indukčný mód), alebo dodávať (kapacitný mód) jalový výkon v mieste jeho pripojenia. Uvažuje sa, že maximálna hodnota dodávaného/odoberaného jalového výkonu je 50 MVAr.

Obr. 1. a) TCSC, b) SVC.

Činnosť oboch týchto zariadení má vplyv na zmenu tokov činných výkonov v sieti. Prenášaný výkon daným vedením je daný vzťahom:

$$P_{12} = \frac{U_1 U_2}{X_c} \sin(\delta_1 - \delta_2)$$
 (2)

Kde P_{12} je prenášaný výkon daným vedením, U_1 a U_2 sú napätia na začiatku a konci vedenia, X_C je celková reaktancia vedenia, δ_1 a δ_2 sú uhly napätí na začiatku a konci vedenia [4].

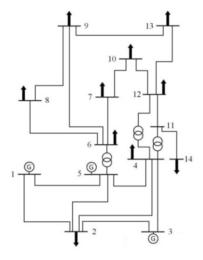

Pričom ako už bolo spomenuté, TCSC má vplyv na zmenu reaktancie vedenia, SVC mení veľkosť napätia v uzle, do ktorého je pripojené. Týmto spôsobom sú teda schopné oba či už v menšej (SVC), alebo väčšej (TCSC) miere ovplyvňovať toky činných výkonov v sieti.

III. PSO

Metóda roja častíc (Particle Swarm Optimization) je pomerne nová stochastická metóda. Jedná sa o výpočtovú matematickú metódu, ktorá optimalizuje problém pomocou opakovaného skúšania a vylepšovania kandidátov na riešenie, s ohľadom na ich meranú kvalitu. PSO optimalizuje problém tým, že má populáciu kandidátov na riešenie nazývaných častice a tieto častice sa pohybujú v preskúmavanom priestore podľa jednoduchého matematického vzorca. Pohyb každej častice je ovplyvnený jej najlepšou známou pozíciou v preskúmavanom priestore a taktiež je vedená smerom k najlepšej známej pozícii v preskúmavanom priestore, ktorá bola nastavená ako najlepšia pozícia, ktorá bola dosiahnutá inými časticami. Týmto spôsobom sa očakáva pohyb častíc k najlepšiemu riešeniu. Celý proces výpočtu je možné zhrnúť do jednotlivých krokov[3]:

- Inicializácia systému na začiatku sa vytvorí náhodná populácia možných riešení.
- 2. Aktualizácia poradového čísla iterácie.
- 3. Výpočet cieľovej funkcie.
- Aktualizácia rýchlosti ktorou častice prelietavajú preskúmavaným priestorom. Za týmto účelom sa využíva najlepšia dosiahnutá pozícia samotnou časticou a taktiež ostatnými časticami.
- 5. Aktualizácia pozície tá je založená na aktualizácii rýchlosti.
- Aktualizácia najlepšieho riešenia každej častice každá častica sa vyhodnocuje a aktualizuje podľa aktualizácie pozície.
- Hľadanie minimálnej hodnoty medzi individuálne najlepšími, pri posudzovaní najlepších riešení, ktoré boli dosiahnuté v každej iterácií a boli považované za minimum.
- Kontrola stop kritéria, aj nie je splnené postup sa opakuje od bodu č. 2.

Celý tento proces je zosumarizovaný v uvedenom vývojovom diagrame na obr.2.


Obr. 2. Vývojový diagram PSO.

IV. FORMULÁCIA ÚLOHY

Hlavnou úlohou je zistiť maximálne možné zaťaženie sústavy pri súčasnom znížení celkových činných strát v sieti. Uvažuje sa sieť z obr.3, pričom uzly 1 až 5 sa nachádzajú na napäťovej hladine 400 kV a uzly 6 až 15 na napäťovej hladine 110 kV. Všetky odoberané/dodávané výkony sú uvedené v tab.1. Výroba/spotreba v jednotlivých uzloch siete sa zvyšovala s každým krokom o 2,5% oproti hodnotám uvedeným v tab.1. V celom procese sa sledujú nasledujúce prevádzkové obmedzenia, ktoré musia byť splnené [5]:

- Dovolené hodnoty napätí v uzloch maximálne dovolené odchýlky napätí sú 5 % a 10 % na napäťovej hladine 400 kV resp. 110 kV.
- Max./min. možné dodávané jalové výkony generátorov do siete. Pre generátor pracujúci do uzla 3 je tento regulačný rozsah ±50 MVAr, pre generátor pracujúci do uzla 5 je to ±100 MVAr.
- 3. Max./min. možné hodnoty nastavených odbočiek na transformátoroch. V sieti pracujú tri transformátory, ktorých parametre sú rovnaké a u všetkých sa uvažuje regulácia odbočiek na primárnej strane s krokom 2,5 %.
- 4. Tepelné obmedzenia všetkých prenosových vedení, t.j. maximálny dovolený tok prúdu cez vedenie nesmie prekročiť maximálnu možnú hodnotu. Uvažuje sa maximálny dovolený prúd 2000 A vedením na 400 kV napäťovej hladine, 420 A na napäťovej hladine 110 kV.
- Maximálny počet súčasne pracujúcich FACTS zariadení nesmie byť väčší ako tri.
- Max./min. možný jalový výkon dodávaný/odoberaný SVC zariadením nesmie byť väčší ako ± 50 MVAr.
- Kompenzačný rozsah TCSC umožňuje zmenu reaktancie vedenia od 40 % do 160 %pôvodnej hodnoty reaktancie vedenia.

Spomenuté obmedzenia sú zahrnuté v cieľovej funkcii vo forme penalizácií.

Obr. 3. 14-uzlová sieť.

Aby bolo možné zistiť veľkosť vplyvu FACTS zariadení uvažujú sa dva prípady:

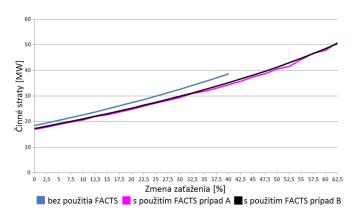
Zvyšovanie zaťaženia sústavy bez využitia FACTS zariadení v tomto prípade sa uvažuje postupné zvyšovanie výroby/spotreby v sieti až pokiaľ nedôjde k stavu, v ktorom už nie je možné udržať všetky prevádzkové obmedzenia. Pri tomto postupe sa uvažuje možnosť riadenia napätí v sieti pomocou zmien odbočiek transformátorov a pomocou zmien dodávaných jalových výkonov generátorov.

TABUĽKA I Výroba/spotreba výkonov v jednotlivých uzloch siete

	Výroba/Spotreba	
	P	Q
Číslo uzla	[MW]	[MVAr]
1	639	-124
2	-400	-175
3	100	50
4	-400	-175
5	400	200
6	-40	-15
7	-40	-15
8	-40	-15
9	-40	-15
10	-40	-15
11	0	0
12	-40	-15
13	-40	-15
14	-40	-15

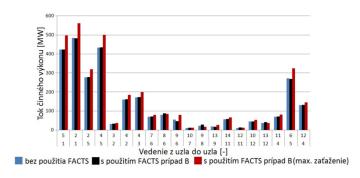
Zvyšovanie zaťaženia sústavy s využitím FACTS– uvažuje sa, že sú k dispozícií štyri FATCS zariadenia (2 x SVC, 2 x TCSC), ale súčasne môžu byť nasadené maximálne tri. V procese optimalizácie sa teda rozhodne o počte nasadených jednotlivých zariadení v danom prípade, o ich konkrétnom umiestnení a parametroch. Keďže v každom prípade zmeny zaťaženia sústavy je možné dospieť k výsledkom, ktoré uvažujú použitie FACTS zariadení v rôznych častiach siete, prípadne iný pomer nasadenia jednotlivých druhov zariadení, je táto úloha rozdelená na dve nasledujúce časti:

Prípad A- v tomto prípade je umožnené meniť rozmiestnenie aj pomer využitia jednotlivých druhov FATCS zariadení pri každej zmene zaťaženia siete.

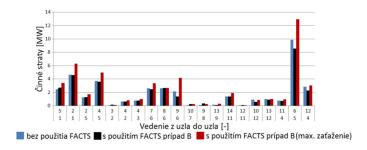

Prípad B- reprezentuje to, že v praxi nie je možné so smenou zaťaženia neustále meniť druhy použitých zariadení aj ich miesta zapojenia v sieti. Preto, v tomto prípade je možné hľadať len optimálne parametre už nasadených FACTS zariadení. Druhy použitých zariadení a ich miesta nasadenia vychádzajú z prípadu A pre najvyššie dosiahnuté možné zaťaženie sústavy.

Zvyšovanie výroby/spotreby v jednotlivých uzloch bolo pozastavené, ak bol dosiahnutý stav pri, ktorom už nebolo možné dodržať vyššie spomenuté prevádzkové obmedzenia.

V. DOSIAHNUTÉ VÝSLEDKY


Všetky dosiahnuté výsledky sú uvedené v nasledujúcich grafoch. Na obr. 4 je zobrazená zmena zaťaženia siete v závislosti od zmeny celkových činných strát v sieti. Ako je vidieť, v prípade bez použitia FACTS zariadení došlo k porušeniu prevádzkových obmedzení pri zvýšení výroby/spotreby o 40 %. Pri ich využití bolo možné navýšiť pôvodné zaťaženie až o 62,5 % oproti pôvodnému zaťaženiu. V tomto prípade sa optimalizačným procesom určilo ako najvýhodnejšie riešenie použitie dvoch SVC zariadení zapojených do uzlov č. 8 a č. 10, spolu s jedným TCSC zariadením zapojeným medzi uzlami č. 6 a č. 9. V prípade maximálneho možného zaťaženia siete oba zariadenia SVC dodávali do siete ich maximálny možný jalový výkon t.j. 2 x 50 MVAr a TCSC pracovalo v kapacitnom móde, t.j. odkompenzovalo reaktanciu vedenia na 61 % pôvodnej hodnoty.Nad touto hranicou už nie je možné ani vprípade použitia FACTS zariadení udržať všetky prevádzkové obmedzenia v rámci dovolených

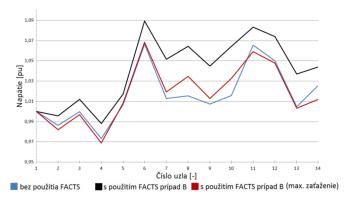
prevádzkových obmedzení a dochádza k ich porušeniu. Konkrétne sa jedná v oboch prípadoch (aj pre prípad bez FACTS zariadení) o preťaženie vedenia medzi uzlami č. 6 a č. 8, kedy prúd v danom vedení prekročil stanovenú hranicu 420 A. Je zaujímavé sledovať, aký vplyv majú FACTS zariadenia na zmenu celkových činných strát v sieti. Ak vezme do úvahy prípad, kedy bolo dosiahnuté maximálne zaťaženie sústavy bez použitia FACTS zariadení, tak s ich využitím sa činné straty dorovnali na túto hodnotu až pri zaťažení o 7,5 % vyššom.To jasne poukazuje na skutočnosť, že pomocou ich nasadenia sa nielen zvýšila zaťažiteľnosť siete, ale aj celkové činné straty boli nižšie.



Obr. 4. Zmena činných strát v závislosti od zmeny zaťaženia siete.

Rozdiel v zmene činných strát medzi prípadmi A a B je spôsobený v dôsledku toho, že v prípade B už nebolo možné meniť rozmiestnenie, prípadne druh použitých zariadení. Kvôli tomu v prípade B boli celkové činné straty v sieti v jednotlivých prípadoch vyššie. V priemere sa však nejedná o rozdiel väčší ako 2 % oproti prípadu A.

Obr. 5. Zmeny tokov činných výkonov vo vedeniach.



Obr. 6. Zmeny činných strát vo vedeniach.

Obr.5 a obr.6 reprezentujú zmeny tokov činných výkon a strát v jednotlivých vedeniach a to pre prípady, keď je v sieti zvýšená výroba/spotreba o 40 % pre prípad bez (modrá) a s využitím (čierna)

FACTS zariadení. Červená farba reprezentuje stav, v ktorom bolo maximálne možné zaťaženie sústavy. Ako je vidieť na obr. 5. tok činného výkonu sa vo vedení z uzla č. 6 do uzla č. 8 veľmi nemení v žiadnom z uvedených prípadov. To poukazuje na to, že vďaka FACTS zariadeniam bol tento tok činného výkonu vytláčaný z tohto vedenia, aby nešlo k jeho preťaženiu. K tomu došlo až pri zvýšení výroby/spotreby v sieti o viac ako 62,5 %.

Obr. 7 reprezentuje zmenu napätí v jednotlivých uzloch siete. Ako je vidieť, v žiadnom z uvedených prípadov neboli napätia v uzloch siete mimo povolený rozsah.

Obr. 7. Priebeh zmien napätí v jednotlivých uzloch.

VI. ZÁVER

Uvedený článok je venovaný problematike čo najefektívnejšieho využívania FACTS zariadení v ES. Cieľom bolo ukázať, že nasadením niektorých druhov FACTS zariadení je možné dosahovať niekoľko cieľov súčasne. V tomto konkrétnom prípade sa preukázalo, že je možné súčasne zvýšiť zaťažiteľnosť sieti, pri súčasnom znížení celkových činných strát v danej sieti. Nakoľko finančné investície do týchto druhov zariadení sú pomerne značné, javí sa tento spôsob ich využitia ako výhodnejší, oproti prípadom keď sa zvažuje len jednoúčelové využitie daných zariadení.

POĎAKOVANIE

Túto prácu podporila Vedecká grantová agentúra Ministerstva školstva SR a Slovenskej akadémie vied projektamiVEGA č. 1/0166/10 a VEGA 1/0388/13 a Agentúra na podporu výskumu a vývoja projektom APVV-0385-07.

LITERATÚRA

- [1] HINGORANI, G. N. - GYUGYI, L.: Understanding FACTS. Concepts and technology of Flexible AC transmission Systems. New York: IEEE Press, 2000. 432 s. ISBN 0-7803-3455-8
- [2] JOHNS, A. T. TER-GAZARIAN, A. WARNE, F.: Flexible AC transmission systems (FACTS). The Institution of Electrical Engineeres, 1999, 592 pp, ISBN 0-85296-771-3
- SOLIMAN, S. MANTAWY, A.: Modern Optimalization Techniques with Applications in Electric Power Systems. University of Florida, 2011. 426 s. ISBN 978-1-4614-1751-4
- [4] MATHUR, R. M., VARMA, R. K.: "Thyristor-based FACTS controllers for electrical transmission systems," Institute of Electrical and Electronic Engineers, 2002, 493 s, ISBN 0-471-20643-1
- MOMOH, J.: Electric Power System Application of Optimalization.
- Hovard University Washington, D. C., 2001. 478 s. ISBN 0-8247-9105-3 MARTÍNEK, Z., KRÁLOVACOVÁ, V.:The Solution for Repairable Units. Proceedings of the 11th international Scientific Conference EPE 2010, Electric Power Engineering 2010, 4.- 6.5. 2010 hotel SANTON -Brno, Czech Republic, University of Technology Brno. IEEE
- GOŇO, R., KRÁTKÝ, M., RUSEK, S.: Analysis of Failures in Electrical Distribution System. In sborník konference EPE 2009, Ostrava :VŠB -TU Ostrava, 2009, 379 - 383, ISBN 978-80-248-1947-1
- MÜLLER, Z. SÝKORA, T. ŠVEC, J. TLUSTÝ, J. 2009"Power Flow Control in ES using FACTS Systems". In Fifth international scientific symposium ELEKTROENERGETIKA 2009 [CD-ROM]. Košice: TUKošice, FEI, p. 427-433. ISBN 978-80-553-0237-9

ADRESY AUTOROV

Ing. Jakubčák, Technická Univerzita Košice. elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, Roman.Jakubcak@tuke.sk

doc. Ing. Ľubomír Beňa, PhD., Technická Univerzita Košice, Katedra elektroenergetiky, Mäsiarska 74, Košice, SK 04210, Slovenská Republika, Lubomir.Bena@tuke.sk

Ing. Miroslav Kmec, Technická Univerzita Košice, Katedra elektroenergetiky, Mäsiarska 74. Košice. SK 04210. Miroslav.Kmec@tuke.sk