Peter Girovský

HIL simulácia neurónových sietí

Príspevok sa zaoberá návrhom bezsnímačového vektorového riadenia asynchrónneho motora s kotvou nakrátko. Pre pozorovanie uhlovej rýchlosti asynchrónneho motora je použitý pozorovateľ na báze dopredných neurónových sietí. Vstupnými veličinami pre pozorovateľ rýchlosti sú zložky statorového prúdu a statorového napätia motora. Simulačný návrh pozorovateľa a jeho testovanie prebiehalo v simulačnom prostredí MATLAB—Simulink. Verifikácia dosiahnutých simulačných výsledkov neurónového pozorovateľa rýchlosti bola robená prostredníctvom Real-Time systému na sústave striedavý menič - asynchrónny motor.

Kľúčové slová: simulácia, pozorovateľ, neurónová sieť

i. Úvod

Klasické riešenie regulačných problémov elektrických pohonov vychádza zo znalosti matematického modelu sústavy. V lineárnych časovo premenných sústavách môže byť ich model natoľko zložitý, že algoritmus riadenia, vychádzajúci z toho modelu, nie je riešiteľný v reálnom čase. Naproti tomu riadenie na báze teórie fuzzy množín a umelých neurónových sietí nevyžaduje znalosť matematického modelu regulovanej sústavy. Hlavným znakom týchto spôsobov riadenia je schopnosť adaptácie a učenia, využitím čoho sa riadenie skvalitňuje. Moderné aplikácie umelej inteligencie v elektrických pohonoch založené na použití fuzzy logiky, alebo teórie neurónových sietí, ktoré pracujú vo funkcii pozorovateľov stavových veličín pre bezsnímačové regulované pohony, alebo pracujú ako regulátory rýchlosti a polohy. Vo všeobecnosti aplikácie umelej inteligencie v elektrických pohonoch môžu viesť k zlepšeniu vlastností a zvýšeniu robustnosti voči zmenám záťaže alebo parametrov sústavy.

Bezsnímačovému vektorovému riadeniu a modernému riadeniu na báze neurónových sietí je v poslednej dobe venovaná veľká pozornosť. Bezsnímačové riadenie eliminuje senzory rýchlosti, toku a momentu a nahradzuje ich približným výpočtom na báze digitálneho signálového procesora z okamžitých hodnôt statorových napätí a prúdov použitím modelu asynchrónneho motora. V praxi sa najčastejšie používa MRAS (Model Reference Adaptive System) štruktúry pozorovania uhlovej rýchlosti, alebo pozorovatele založené na Kalmanovom filtri. V poslednom období je výskumná činnosť zameraná na použitie neurónových sietí v riadení nelineárnych funkcií so želaným stupňom presnosti. Predpokladá sa, že v budúcnosti viac funkcií bude integrovaných v jednej neurónovej sieti a napokon jedna alebo dve neurónové aplikácie – špecifické čipy s integrovanými obvodmi, budú schopné pokryť celé riadenie elektrického pohonu.

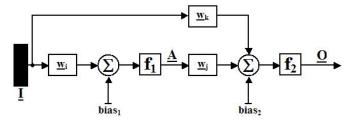
II. NEURÓNOVÁ SIEŤ PRE POZOROVANIE UHLOVEJ RÝCHLOSTI

Pre korektné riadenie rýchlosti asynchrónneho motora potrebujeme poznať skutočnú hodnotu rýchlosti. Túto informáciu môžeme získať na základe priameho merania rýchlosti pomocou snímača, alebo z pozorovateľa rýchlosti, ktorého princíp je zvyčajne založený na matematickom modeli asynchrónneho motora. V našom prípade sme sa rozhodli využiť umelé neurónové siete pre pozorovanie rýchlosti asynchrónneho motora, pričom pri návrhu sme vychádzali z jednoducho merateľných veličín t.j. statorový prúd a napätie.

Vo všeobecnosti návrh neurónového pozorovateľa pozostáva z niekoľkých krokov:

- Výber a príprava učiacich vzoriek.
- Voľba konfigurácie a zostavenie neurónovej siete.
- Učenie neurónovej siete.
- Testovanie neurónovej siete.

UČIACE VZORKY


Uhlová rýchlosť asynchrónneho motora je závislá od napájacieho napätia a je ovplyvnená záťažným momentom. Preto ako vstupné vzorky Pm pre učenie neurónovej siete boli vybrané hodnoty statorového napätia v krokoch (k) a (k-1) - u(k), u(k-1) a hodnoty zložiek prúdu d, q v kroku (k) a (k-1) - id(k), iq(k), id(k-1), iq(k-1). Výstupné vzorky Tm pre učenie siete predstavuje hodnota rýchlosti v kroku (k) - otáčkv(k).

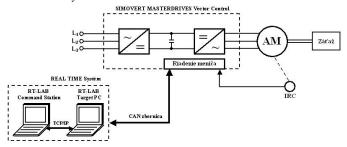
Výstupné vzorky pre učenie boli reprezentované vektorom o veľkosti 6x126013 vzoriek. Tieto vzorky boli následne normované, aby výsledná hodnota danej veličiny bola z intervalu <-1,1>.

KONFIGURÁCIA NEURÓNOVEJ SIETE

Pre neurónový pozorovateľ rýchlosti asynchrónneho motora bol zvolený kaskádny typ siete newcf s jednou skrytou vrstvou so šiestimi neurónmi, konfigurácia 6-6-1. Ako prenosové funkcie boli použité pre skrytú vrstvu nelineárna tansigmoidálna funkcia tansig a pre výstupnú vrstvu lineárna funkcia purelin.

Off-line učenie neurónových sietí prebiehalo na učiacich vzorkách pomocou Levenberg-Marquartovho učiacieho algoritmu založeného na spätnom šírení chyby. Na obr. 1 je zobrazená principiálna schéma neurónovej siete pozorovateľa rýchlosti.

Obr. 1. Principiálna schéma neurónového pozorovateľa rýchlosti

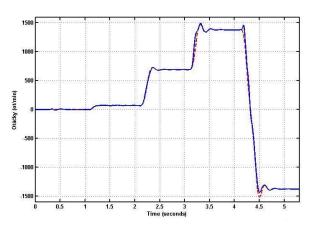

Na obrázku \underline{O} predstavuje výstupný vektor, \underline{I} predstavuje vektor vstupných hodnôt a w_i , w_j , w_k sú váhy prepojení jednotlivých neurónov.

$$\underline{A} = f_1[\underline{\sum} \underline{I}.\underline{w}_i + bias_1]$$

$$\underline{O} = f_2[\underline{\sum} (\underline{A}.\underline{w}_j + \underline{I}.\underline{w}_k) + bias_2]$$
(1)

III. HIL SIMULÁCIA NEURÓNOVÉHO POZOROVATEĽA RÝCHLOSTI

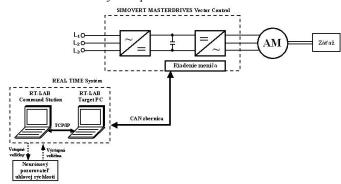
Pre overenie navrhnutého neurónového pozorovateľa rýchlosti bola použitý systém zobrazený na obr. 2. Tento reálny systém pozostával z frekvenčného meniča SIMOVERT MASTERDRIVES Vector Control, trojfázového asynchrónneho motora, inkrementálneho snímača, počítača s nainštalovaným programom MATLAB a počítača s Real-Time systémom.


Obr. 2. Principiálna schéma reálneho systému

DOSIAHNUTÉ VÝSLEDKY

Verifikácia neurónového pozorovateľa rýchlosti prebiehala na Real-Time systéme, v dvoch fázach. V prvej boli priebehy uhlovej rýchlosti dosiahnuté pozorovaním neurónovým pozorovateľom konfrontované so skutočným priebehom rýchlosti asynchrónneho motora na základe zmeny žiadanej hodnoty uhlovej rýchlosti a záťaže.

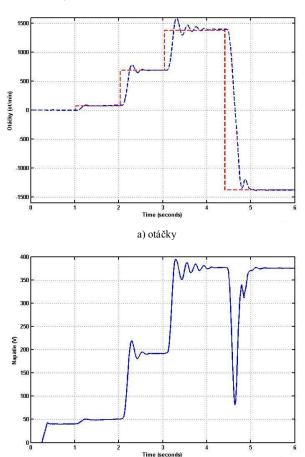
Na obr. 3 je zobrazený priebeh pozorovanej a skutočnej rýchlosti so záťažou, pričom požiadavky na zmeny rýchlostí boli rovnaké ako na predchádzajúcom obrázku. Priebeh skutočných otáčok je zobrazený červenou čiarkovanou čiarou a priebeh otáčok získaný z neurónového pororovateľa je zobrazený plnou modrou čiarou.


V čase 1s bola pri nulovej záťaži zadaná zmena rýchlosti z 0 ot/min na 5% nominálnych otáčok, v čase 2s na 50% nominálnych otáčok, v čase 3s na 100% nominálnych otáčok a v čase 4s bola zadaná požiadavka na reverzáciu z hodnoty 100% nominálnych otáčok na –100% nominálnych otáčok.

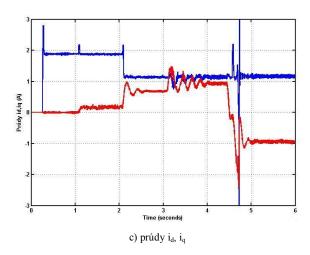
Obr. 3. Porovnanie pozorovanej a skutočnej hodnoty otáčok so záťažou

V druhej fáze podľa schémy uvedenej na obr. 4, informácia o otáčkach získavanej pomocou inkrementálneho snímača bola nahradená informáciou o otáčkach z neurónového pozorovateľa.

V tomto prípade je informácia o rýchlosti asynchrónneho motora získavaná z neurónového pozorovateľa vytvoreného v Real-Time systéme a komunikácia s meniča s Real-Time systémom prebieha prostredníctvom CAN zbernice. Výsledky tohto testovania sú zobrazené na nasledujúcich priebehoch.



Obr. 4. Principiálna schéma reálneho systému s neurónovým pozorovateľom rýchlosti asynchrónneho motora


Na obr. 5 je zobrazený priebeh otáčok pri zmene žiadanej hodnoty so záťažou.

Priebeh žiadaných otáčok je znázornený čiarkovanou červenou čiarou a priebeh skutočných otáčok je znázornený plnou modrou čiarou. Zložka prúdu id je zobrazená červenou čiarou a modrou čiarou je zobrazený priebeh zložky prúdu iq.

V čase 1s bola bez zaťaženia zadaná zmena rýchlosti z 0 ot/min na 5% nominálnych otáčok, v čase 2s na 50% nominálnych otáčok, v čase 3s na 100% nominálnych otáčok a v čase 4,2s bola zadaná požiadavka na reverzáciu z hodnoty 100% nominálnych otáčok na – 100% nominálnych otáčok.

b) napätie

Obr. 5. Priebehy otáčok, napätia a zložiek prúdov pri zmene rýchlosti so záťažou

IV. ZÁVER

V tomto článku boli prezentované dosiahnuté výsledky pri využití umelých neurónových sietí ako pozorovateľov uhlovej rýchlosti pri vektorovom riadení asynchrónneho motora. Z výsledkov týchto simulácií možno vidieť, že pozorovatele založené na báze umelých neurónových sietí sú v porovnaní s klasickými metódami pozorovania veličín dostatočne presné aj napriek tomu, že k ich správnej funkcii nepotrebujeme poznať bližšie informácie o danom systéme.

Týmto praktickým overením na reálnom modeli sa nám potvrdili naše teoretické predpoklady zo simulácií a bolo dokázané, že neurónové siete môžu byť vďaka svojím výhodným vlastnostiam použité pre pozorovanie stavových veličín pohonov, alebo iných

systémov a to nielen v zapojení s Real-Time systémom, ale aj inými systémami založenými napríklad na DSP.

POĎAKOVANIE

Vďaka za podporu projektu APVV-0185-10.

Vďaka za podporu projektu VaV operačného programu, Centrum excelentnosti výkonových elektronických systémov a materiálov pre ich komponenty No. OPVaV-2008/2.1/01-SORO, ITMS 26220120003 financovaného Európskym fondom regionálneho rozvoja (ERDF).

Vďaka za podporu projektu VaV operačného programu, Centrum excelentnosti výkonových elektronických systémov a materiálov pre ich komponenty II. No. OPVaV-2009/2.1/02-SORO, ITMS 26220120046 financovaného Európskym fond regionálneho rozvoja (ERDF).

LITERATÚRA

- [1] BALARA, Dušan TIMKO, Jaroslav: Estimation of Induction Parameters using Neural Networks, Journal of Electrical Engineering, ISSN 1335-3632, Vol. 50, No. 7-8. str. 178-184.
- [2] TIMKO, Jaroslav ŽILKOVÁ, Jaroslava BALARA, Dušan: Aplikácie umelých neurónových sietí v elektrických pohonoch, Košice: Calypso s.r.o., 2002. ISBN 80-85723-27-1.
- [3] VAS, Peter: Artificial-Intelligence-based electrical machines and drives, Oxford University Press 1999.

ADRESY AUTOROV

Peter Girovský, Technická Univerzita Košice, Katedra elektrotechniky a mechatroniky, Letná 9, Košice, SK 04200, Slovenská Republika, peter.girovsky@tuke.sk