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Neurocontroller for Induction Motor

The paper is focused especially on presenting possibilities of applying artificial neural networks (ANN) at creating the
system inverse models that are expected to be of use at designing control algorithm for non-linear dynamic systems. The paper
deals with a quasi-inverse model which is intended to work as a controller of a non-linear dynamic system simulating an
induction motor. The presented method of control takes advantage of approximating properties of multi-layer perceptron
(MLP) networks. Obtained simulation results are a contribution to theoretical discussion of the problem.
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I. INTRODUCTION

In reality, most of the systems are non-linear. However, many
systems can be represented without any significant loss of accuracy by
an equivalent linear representation. Control designs based on system
linearization are a widely applied technique in the industry. Other
systems are increasingly characterized by complex non-linear
dynamics (e.g. high non-linearity, abrupt parameter variations,
external disturbances etc.). The important non-linear diversity is the
main reason why no systematic and generally applicable theory for
non-linear control design has been developed yet. It is the ability of
the artificial neural networks to model non-linear systems that can be
the most readily exploited in the synthesis of non-linear controllers.

We are interested in different already existing methods used to
develop a neural controller based on an inverse model of a system.

Part one of the paper is focused on explaining the method [1],
while the following one demonstrates the use of ANN for purposes of
controlling in simulation studies for a squirrel-cage induction motor.
Last part of the paper demonstrates sensitivity of the speed controller
to motor parameters changes.

Il. THE INVERSE NEURAL MODEL

Although the system inverse model plays an important part in the
theory of control, the attainment of its analytical form is pretty
strenuous. Anticipating that a dynamic system can be described by the
differential equation

Y+ D=f[y(K), ..., y(k-n+1), u(k), ..., u(k-m+1)] 1)

where the system output y(k+1) depends on the preceding n-output

and m-input values, the system inverse model can be generally
presented in the following form

u@)=f"[r(k+1), y(),..., ylen+1), u(k), ..., uk-m+1)] 2

Here y(k+1) is an unknown value, and hence can be substituted by
the output quantity desired value r(k+1). The simplest way to arrive at
a system inverse neural model is it to train the neural network to
approximate the system inverse model.

In real life, the most frequently used are two concepts of inverse
neural model architecture: the ”general training” architecture (Fig.1),
and the “specialized training” architecture (Fig.2), respectively.
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Figure 1. The ”general training” architecture.
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Figure 2. The ”specialized training” architecture.

If in the general training architecture, signal u is applied to the
system input, signal y is obtained at the system output. The different
between the incoming signal u and the neural model output uy is the
error e, which can be utilized for network learning.

Contrary to the previous approach, it is error e, that is in the
“specialized training” architecture utilized for neural network training.
Error e, is here obtained as the difference between the desired input
signal  and the signal y that represents the actual system output.

The former of the two methods brings several substantial
disadvantages:

& The selection of varying output signal y values, specified for
training of the network, cannot guarantee that the trained system
output will fall exactly into those regions that are important for its
successful utilization in controlling.

& If'the controlled system happens to be multidimensional, the
attained model that is represented by the inverse neural model
may be incapable of imitating a real system.

The above outlined drawbacks can be circumvented by the letter
method — the “specialized training” architecture-that yields some
advantages when compared with the former one:

& The method (Fig.2) is intended directly for controlling,
whereas the training signal is formed in dependence on the
difference between the system desired and real outputs.

& In the case of multidimensional dynamic system, the real
inverse model can closely simulate a real system.

Multi-layer neural networks can be utilized when creating a system
inverse neural model. The use of the MLP type static neural networks
presents the simplest solution, however the representation of the
system dynamic remains problematic with this neural model. The
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application of a MLP type neural network with time delaying of the
input layer signals can present the solution for introducing the process
dynamics into MLP type static neural network. The solution falls
among the simplest ones, and the advantage of utilizing this network
type rests with the opportunity of its training by traditional
backpropagation algorithm for multi-layer networks.

lll. DESIGN OF THE NEUROCONTROLLER

The main requirement we have specified is maintaining the desired
speed of the induction motor. Considered for the neurocontroller
output were the voltage components that would present an action
intervention for PWM modulation, which would eventually produce
the stator voltage desired values from the mains voltage (rectified via
using an uncontrolled rectifier). Since the neurocontroller output in
such a structure is not directly equal to voltage fed into the motor we
have abandoned the idea to establish an accurate inverse model;
considered for input quantity of the quasi-inverse neural model were
rather the desired and at a time also real (measured) motor speed
(Fig.3).
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Figure 3. ANN induction motor control scheme.

The design of the neurocontroller is based rightly on known values
of these speeds.

A typical technique for control synthesis purposes is based on
using a description of the induction motor in rotating reference frames
(x, ¥). The use of such rotating reference frames has the benefit of
simplifying the model of the motor from the point of view of
controller design. In this section design of the neural controller will be
presented.

The neurocontroller consists of three multilayer perceptron (MLP)
networks with backpropagation learning algorithm.
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Figure 4. Concept of the ANN controller.

The first subsystem (Fig.4) of the neurocontroller serves for
desired current components reconstruction and the second subsystem
serves for real current components identification. The third of them
serves for corresponding voltage components reconstruction for PWM

converter. These voltage components present action intervention for
PWM modulation that would make up the desired stator voltage
values from the mains voltage (rectified using an uncontrolled
rectifier). The overall control structure is shown in Fig.3.

IDENTIFICATION AND CONTROL OF STATOR CURRENTS

The first and second neural networks are identical. Their inputs are
values of angular speed, expected and actual, in k-th and (k-1)-th step.
The structure of the ANNSs is shown in Fig.5.

Figure 5. The structure of the ANN1 and ANN2.

Lo (k+ 1)~ (), @ (k-1), w] 3)
iy (k+D)=f[w (), o (k-1), w]

and

s (k- D)=flo(k), o(k-1), w] “)
sy (Kt D)=flo(k), w(k-1), w]

Reconstructed actual stator current (3) corrects desired value of
current from the first ANN (4):

Aig (ke 1)=i"y (k+1)- iy (k+1) (%)
Resulting signal of the correction:
isc (k+1): i*s (k+])_ Aiv (k+]) (6)

in k-th and (k-1)-th steps and the desired speed value present
inputs to the third ANN, which generates appropriate voltage values
for PWM converter:

uy (k+1)=glis. (k+1), i (K), @', w] (N

The structure of the ANN is shown in Fig.6. MLP networks are
used for all f and g approximations. The number of inputs to each of
them is determined by the relation (3), (4) or (7). Twenty hidden
neurons in one hidden layer of every neural subsystem employ the
hyperbolic tangent functions.

All the networks are trained off-line in order to minimise the
control performance. Training patterns for an ANN controller were
prepare by numerical simulations of the induction motor model with
help of Matlab-Simulink and Neural Network Toolbox. In simulations
the nominal data of a 3kW induction motor were used. The
Backpropagation training algorithm with Levenberg-Marquardt’s
modification was used for the training procedures.
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Figure 6. The structure of the ANN3.

IV. SIMULATION RESULTS

Presented in this section will be the results simulated in MATLAB
environment for given connection of the control diagram shown in
Fig.3, where the designed neural controller was implemented. The
testing of the neural controller was performed on the induction motor
with the following parameters:

U=220V/50Hz, 1y=6.94, P=3kW, ny=I420RPM, R,;=1.810hm,
R,=1.910hm, L,,~L;,=8.85mH, L,=0.184H, p,=2, My=20.17Nm,
J=0.1kgm’.

In the following figures the speed control quality is presented. The
neural speed controller was trained in the wide range of speed and
load torque changes based on the simultation results obtained for
induction motor model. Then the trained controller was tested for
speed reference signal different than used in the training procedures.
These testing signals together with results of simulations are presented
in Fig.7 and Fig. 8. The characteristics were obtained for nominal
parameters of the induction motor.
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Figure 7. Motor speed at changes speed reference value and at change of load
torque.
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Figure 8. Motor speed at load test.

SENSITIVITY OF THE SPEED CONTROLLER TO MOTOR
PARAMETER CHANGES

The trained controller was tested also for changed motor
parameters different than used in the training procedures. These

testing signals together with results of simulations are presented in
Fig.9, Fig. 10 and Fig. 11.
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Figure 9. Motor speed for torque of inertia changes.
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Figure 10. Motor speed for stator resistance changes.
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Figure 11. Motor speed for rotor resistance changes.

V. CONCLUSION

The paper deals with the design of a neural controller for non-
linear dynamic system control based on a quasi-inverse model of the
system. The design of neural controller is based on sensor information
pertaining to angular speed of an induction motor. The control task is
to reach the motor desired angular speed. The neurocontroller consists
of three neural networks with backpropagation learning algorithm.
First subsystem of the neurocontroller serves for desired current
components reconstruction and the second subsystem serves for real
current components reconstruction. The third of them serves for
corresponding voltage components reconstruction for PWM converter.

MLP networks are used for all function approximations. Twenty
hidden neurons in one hidden layer of every neural subsystem employ
the hyperbolic tangent functions. All the networks are trained oft-line
in order to minimise the control performance. Training samples for an
ANN controller were attained via simulation of an induction motor
model in MATLAB environment. Used with these networks was
learning by use of Levenberg-Marquardt algorithm. Simulations
demonstrated good performance of this method.
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